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Abstract— Considerable recent experimental evidence sug-
gests that significant stochastic fluctuations are present in gene
regulatory networks. The investigation of stochastic properties
in genetic systems involves the formulation of a mathematical
representation of molecular noise and devising efficient compu-
tational algorithms for computing the relevant statistics of the
modeled processes. However, the complexity of gene regulatory
networks poses serious computational difficulties and makes
any quantitative prediction a difficult task. Monte Carlo based
approaches are typically used in study of complex stochastic
systems, but they often suffer from long computation times,
slow convergence, and offer little analytic insight. The recently
proposed Finite State Projection (FSP) approach provides an
analytical alternative that avoids many of the shortcomings
of Monte Carlo methods, but thus far it has only been
demonstrated for a certain class of problems. In this paper
we show that the applicability of the finite projection approach
can be enhanced by taking advantage of tools from the fields of
modern control theory and dynamical systems. In particular, we
present an approach that utilizes singular perturbation theory
in conjunction with the Finite State Projection approach to
improve the computation time and facilitate model reduction.
We demonstrate the effectiveness of the resulting slow manifold
FSP algorithm on a simple example arising in the cellular heat
shock response mechanism.

I. INTRODUCTION

Through evolution living organisms have developed com-
plex robust control mechanisms with which they can regulate
intracellular processes and adapt to changing environments.
These mechanisms are triggered by small changes in sen-
sitive control parameters, yet their functions are unaffected
by relatively large variations in the system that may even
include damage of whole parts of the mechanism itself.
Understanding control processes that take place inside a cell
is key to understanding fundamental biological functions of
living organisms. However, despite dramatic new develop-
ments in experimental study of intracellular processes, the
quantitative study of these systems is significantly hindered
by computational complexity.

For many chemical processes reactants are present in large
numbers and the reactions can be modeled at the macroscopic
level ordinary or stochastic differential equations (ODEs
or SDEs). Inside a cell, however, matters can be entirely
different. Here some chemicals such as proteins or RNA
molecules may be present in only a few copies per cell.
Since these trace chemicals may effect important changes
in the cell’s behavior, they cannot be ignored, yet they
obviously cannot be treated as continuous concentrations.

This consideration has given rise to a relatively new branch
of computational research in chemistry: stochastic modeling
of chemical reactions at the mesoscopic level.

For a discrete population models with N chemical species,
the configuration of the system at any time is specified by
the population of each species: x := [ ξ1 ξ2 . . . ξN ]T .
The configuration space of the system is the N dimensional
non-negative integer lattice that contains all possible config-
urations. Over time, the reacting system follows a trajectory,
where each individual reaction is represented by a jump from
the current configuration to another within the configuration
space. With the assumptions that the system is well mixed,
has constant volume and is kept at constant temperature,
the problem becomes autonomous of time, and the waiting
time between jumps can be modeled as an exponentially
distributed random variable [1]. The probability of each con-
figuration can then be described with the linear time invariant
ordinary differential equation known as the Chemical Master
Equation [2].

Until recently, it was believed that the CME was in-
tractable except in the simplest of circumstances. As a result,
most discrete state stochastic models have been studied
almost exclusively with the simple Monte Carlo simulation
technique known as the stochastic simulation algorithm SSA
[3]. Here random numbers are generated for every individual
reaction event in order to determine (i) when the next reaction
will occur, and (ii) which reaction it will be. However, for
most systems, huge numbers of individual reactions may
occur, and the SSA is often too computationally expensive.
Two types of recent approximations have been made to
improve efficiency of the SSA: time scale based system
partitioning routines and τ leaping routines. In the first type,
efficiency is gained by separating the system dynamics into
slow and fast parts [4]–[8]. If one is interested in short time
scales, the slow processes are considered to be constant, and
only the dynamics of the fast partition are considered. If one
is interested in long term behaviors of the system, then the
fast dynamics are averaged in order to concentrate upon the
slow dynamics. In the second type of approximation to the
SSA, some probabilistic aspects of the system are assumed to
be constant over short discrete time intervals, and under this
assumption one can develop a faster Monte Carlo algorithm
that leaps from one time step to the next [9]–[14]. Both
approximation types, system partitioning and τ leaping, have
been very successful in increasing the scope of problems to
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which the SSA may be reasonably applied.
Moving in an entirely different direction, we recently

introduced the Finite State Projection (FSP) method as a new
approach for directly approximating the solution to the CME
[15]. The FSP provides a systematic method to perform bulk
system reductions on the possibly infinite dimensional ODE
in order to find a finite dimensional analytical approximation
to the CME. Unlike Monte Carlo algorithms, the FSP does
not rely on random number generation and provides precise
lower and upper bounds on its approximation accuracy.
While the earliest implementations of the FSP have shown
much promise in dealing with a handful of biologically
inspired models [15], [16], the method is still limited in
problems where accuracy requirements demand considera-
tion of an exorbitantly large state space. In these cases,
model reduction techniques can be utilized to make the
problem dimension more manageable. For example, drawing
upon concepts of reachability and controlability from modern
control theory, one can significantly reduce the order of the
FSP [17]. Additionally, since the SSA benefits so strongly
from system partitioning methods, it is natural to ask whether
the same or similar tools may improve upon the FSP. In this
paper, we show how the FSP can reap huge benefits from
time-scale separation based system partitioning approaches
and the application of linear perturbation theory [18]. This
times-scale separation is exploited to develop the Slow-
Manifold FSP algorithm, which we present here.

In the next section we provide some background on the
basic FSP method. In section III we illustrate how linear
perturbation theory can be used to reduce the order of the
FSP problem and we formulate the Slow-Manifold FSP
algorithm. In section IV we demonstrate this algorithm on
an example from the field of systems biology. Finally, in
section V, we conclude with remarks on the advantages of
these approaches over the original FSP and outline a few
directions for future work on the topic.

II. BACKGROUND

We consider a well-mixed, fixed-temperature, and fixed
volume system of N distinct reacting chemical species.
At any point in time, we use an integer vector x :=
[ ξ1 ξ2 . . . ξN ]T to describe the discrete populations
of the N molecular species. Each x is a unique configuration
of the system, and the nonnegative set NN is the set of
all possible configurations. We will a priori fix a sequence
x1, x2, . . . of elements in NN and define X := [x1, x2, . . . ]T

as the ordered configuration set. Beginning at any xi, suppose
that there can be a maximum of M possible reactions,
where each reaction leads to a different configuration: xi →
xj = xi + νµ. For each µth reaction, νµ is the associated
stoichiometry (directional transition on the configuration set),
and aµ(xi) is the associated propensity function. Define
pi(t) = p(xi, t) as the probability that the system will have
the ith configuration at time t. At an incrementally small time
later, pi(t+dt) is equal to the sum of (i) the probability that
the system begins in xi at t and remains there until t + dt,
and (ii) the probability that the system is in xj 6= xi at t and

will transition to xi during the time step, dt. This probability
can be written as:

pi(t + dt) = pi(t)

(
1−

M∑
µ=1

aµ(xi)dt

)

+
M∑

µ=1

p(xi − νµ, t)aµ(xi − νµ)dt. (1)

From Eqn 1 it is easy to derive the differential equation
known as the Chemical Master Equation, or CME [3]:

ṗi(t) = −pi(t)
M∑

µ=1

aµ(xi) +
M∑

µ=1

p(xi − νµ, t)aµ(xi − νµ).

(2)

By combining all possible reactions that begin or end with
the configuration point, xi, the time derivative of the proba-
bility density of xi can be written in vector form as:

ṗi(t) =


−
∑M

µ=1 aµ(xi)
a1(xi − ν1)
a2(xi − ν2)

...
aM (xi − νM )



T 
p(xi, t)

p(xi − ν1), t)
p(xi − ν2), t)

...
p(xi − νM ), t)

 . (3)

Based upon our enumeration of X, we can combine the
equations for every pi(t) into ordinary differential equation
(ODE):

Ṗ(t) = AP(t), (4)

where P(t) is the probability distribution at time t. The
generator matrix A is uniquely defined by the reaction stoi-
chiometries and propensities and the choice of the enumera-
tion of X. A has the properties that it is independent of t; all
of its diagonal elements are non-positive; all its off-diagonal
elements are non-negative; and all its columns sum to zero.
The solution to Eqn 4 beginning at t = 0 and ending at t = tf
is the expression: P(tf ) = Φ(0, tf ) ·P(0). In the case where
the configuration set is finite dimensional, the operator,
Φ(0, tf ), is the exponential of Atf , and one can compute
the solution: P(tf ) = exp(Atf )P(0). However, when A is
infinite dimensional or extremely large, the corresponding
analytic solution is unclear or vastly difficult to compute.
In these cases, one may devise a systematic means of
approximating the full system using finite dimensional sub-
systems. This truncation approach lies behind the rationale
for the Finite State Projection (FSP) method [15].

We must introduce some convenient notation. Let J =
{j1, j2, j3, . . .} denote an index set. For any two index sets I
and J , let J ⊆ I denote that I contains every element from
J , and let J

⋃
I and J

⋂
I be the union and intersection,

respectively, of J and I . Let J ′ denote the complement of
the set J , where unless stated otherwise the complement is
taken with respect to the set of all non-negative integers. If
X is an enumerated set {x1,x2,x3, . . .}, then XJ denotes
the subset {xj1 ,xj2 ,xj3 , . . .}. Furthermore, let vJ denote
the subvector of v whose elements are chosen according to
J , and let AIJ denote the submatrix of A such that the rows



have been chosen according to I and the columns have been
chosen according to J . For example, if I and J are defined
as {3, 1, 2} and {1, 3}, respectively, then: a b c

d e f
g h k


IJ

=

 g k
a c
d f

 .

For convenience let AJ denote the principle submatrix of A,
in which both rows and columns have been chosen according
to J . Unless otherwise stated, all vector inequalities are to be
interpreted componentwise. With this notation we can restate
the following theorem from [15]:

Theorem 1 If A ∈ Rn×n has no negative off-diagonal
elements, then for any index set, J ,

[expA]J ≥ exp[AJ ] ≥ 0. (5)

Ref. [15] provides a detailed proof of this theorem. The
matrix A in Eqn 4 has no negative off-diagonal terms and
therefore satisfies the assumptions of Thm 1. Consider two
finite configuration subsets XJ1 and XJ2 , where J2 ⊇ J1.
Since the full probability density vector, P(0) is nonnegative,
Thm 1 assures that:

[exp(AJ2tf )]J1PJ1(0) ≥ exp(AJ1tf )PJ1(0) ≥ 0.

where PJ1 is the probability distribution of the elements
of X indexed by J1. This result guarantees that as one
increases the finite configuration subset, the approximate
solution increases monotonically for each element in the
configuration subset.

In addition to being non-negative, P(t) sums to exactly
one. These properties and the nonnegativity of the off-
diagonal elements of A allow one to state the following result
[15].

Theorem 2 Consider a Markov process in which the
probability distribution evolves according to the linear ODE,
Ṗ(t) = AP(t), where A has no negative off-diagonal
entries. If for some finite index set J, ε > 0, and tf ≥ 0,

1T exp(AJ tf )PJ(0) ≥ 1− ε, (6)

then

exp(AJ tf )PJ(0) ≤ PJ(tf ), and (7)
||PJ(tf )− exp(AJ tf )PJ(0)||1 ≤ ε. (8)

While Theorem 1 guarantees that as we add points to
the finite configuration subset, the approximate solution
monotonically increases, Theorem 2 provides a certificate
of how close the approximation is to the true solution.
Together the two theorems lead us to the FSP algorithm
presented in [15]:

The Finite State Projection Algorithm

Inputs Propensity functions and stoichiometry for all reactions.
Initial probability density vector, P(0).
Final time of interest, tf .
Total amount of acceptable error, ε > 0.

Step 0 Choose an initial finite set of states, XJo
, for the FSP.

Initialize a counter, i = 0.
Step 1 Use propensity functions and stoichiometry to form AJi .

Compute ΓJi
= 1T exp(AJi

tf )PJi
(0).

Step 2 If ΓJi
≥ 1− ε, Stop.

exp(AJitf )PJi(0) approximates PJi(tf ) to within ε.
Step 3 Add more states to find XJi+1 .

Increment i and return to Step 1.

For the basic FSP algorithm, if we wish to find a solution
that is accurate to within ε at a time tf , we must find a finite
set of configurations such that the probability of ever leaving
that set during the time interval [0, tf ] is less than ε. For
many problems, including the examples shown in [15], [16],
this set of configurations may be small enough that we can
easily compute a single matrix exponential to approximate
the solution to the CME. However, in other situations that
may not be the case. In the next section we apply some
concepts of linear perturbation theory to reduce the order
of the FSP problem and thereby significantly improve the
efficiency and expand the applicability of the FSP algorithm.

III. THE SLOW-MANIFOLD FSP ALGORITHM

In Step 1 of the FSP algorithm above we are faced with
solving an N dimensional LTI system:

Ṗ(t) = AP(t), (9)

where A is made up from the propensity functions of the
various reactions. In gene networks we can often identify
m clusters of configurations within which transitions occur
quite frequently, while transitions between the clusters are
relatively rare. Let H be a generator matrix that is made
up from the frequent transitions within these clusters, and
let G be the generator made up of the remaining transitions
from one cluster to another such that A = H + G. With
some permutation of the configuration space, H has a block
diagonal structure, H = diag{H1,H2, . . . ,Hm}, where
each block Hi is itself a generator corresponding to a single
cluster of fast interconnected configurations.

Each Hi is itself a generator and therefore has an eigen-
value equal to zero, which corresponds to a left eigenvector
ui = 1T and a positive right eigenvector, vi, where vi

is scaled such that uivi = 1T vi = 1. We use these
eigenvectors to define.

U =

 u1 0 . . .
0 u2 . . .
...

...
. . .

 , and V =

 v1 0 . . .
0 v2 . . .
...

...
. . .

 .

Let S = [ V SR ] be a square matrix in which each
column is an right eigenvector of H that has been scaled
to have an absolute sum of one. The inverse of S is given

by S−1 =
[

U
SL

]
such that we have the following similarity

transformation for H:

S−1HS =
[

0 0
0 Λ

]
, Λ = diag(λm+1, . . . , λN ).



where the first m diagonal elements correspond to the zero
eigenvalues of the Hi blocks, and we label non-zero eigen-
values of H so that 0 > Re{λm+1} ≥ Re{λm+2}, . . . ≥
Re{λN}. If we apply the coordinate transformation[

y1(t)
y2(t)

]
= S−1P(t) =

[
UP(t)
SLP(t)

]
,

Eqn 9 becomes:[
ẏ1(t)
ẏ2(t)

]
=
[

UGV UGSR

SLGV Λ + SLGSR

] [
y1(t)
y2(t)

]
.

(10)
If we can make a clear distinction between frequent and
rare reactions, then we are assured that the magnitude of
GV is small with respect to Λ. For convenience we define
ε = 1

|Re{λm+1}| ||GV||1 and Q = 1
εGV, and we can make

coordinate substitution (y1,y2) = (y, εz) to get the standard
singular perturbation model,[

ẏ(t)
εż(t)

]
=
[

εUQ εUGSR

εSLQ ε(Λ + SLGSR)

] [
y(t)
z(t)

]
.

(11)
We can apply linear perturbation theory to show that |z(t)| ≤
γ(t) + O(ε), where γ = |z(0)| exp(λm+1t) is the transient
error of the fast manifold. For the slow manifold, we have

y(t) = exp(UGVt)y(0) + O(ε),

for all time t ≥ 01.
The reverse transformation then yields

P = S
[

y1(t)
y2(t)

]
= S

[
y(t)
εz(t)

]
= Vy(t) + O(ε)
= V exp(UGVt)y(0) + O(ε)
= V exp(UGVt)UP(0) + O(ε). (12)

It is important to note that due to truncation of Eqn 10,
only contributions of the first m eigenvectors of H affect
the approximate solution. Therefore, instead of calculating
full eigensystems for each block Hi, it suffices to find only
eigenvectors associated with zero eigenvalues.

Applying this model reduction to the original FSP
algorithm yields the following algorithm which we name
the Slow-Manifold FSP algorithm:

The Slow-Manifold FSP Algorithm

Inputs Propensities and stoichiometries for all reactions.
Initial probability density vector, P(0).
Final time of interest, tf .
Target FSP error, δ > 0.

Step 0 Choose initial set of states, XJo , for the FSP.
Initialize a counter, k = 0.

Step 1 Use fast reactions connecting states within XJk
to

form HJk
= diag{H1, . . . ,Hm}.

Use remaining reactions to form GJk
.

Step 2 Find eigenvalues and vectors of each Hi and

1For a detailed derivation of these errors, see the appendix of [18].

build matrices U and V.
Estimate ε = ||GJk

V||1 / |λm+1|.
Compute transient error γ = |SLP(0)|1 exp(λm+1tf ).

Step 3 Find PFSP
Jk

(tf ) = V exp(UGJk
Vtf )UPJk

(0)
and compute ΓJk

= 1T PFSP
Jk

(tf ).
Step 4 If ΓJk

≥ 1− δ, Stop.
PFSP

Jk
(tf ) approximates PJk

(tf ) within δ + γ + O(ε).
Step 5 Add more states to find XJk+1 .

Increment k and return to Step 1.

Above we have used the non-traditional error estimate
notation δ + γ + O(ε) to mean the following. If δ is largest,
then the dominant error is most likely the result of the
projection, and the slow manifold truncation error can be
ignored. If γ is largest then the time tf is too short for
the transient dynamics to sufficiently diminish and additional
eigenvectors must be included in the truncation. Finally, if
ε is larger than δ and γ, then there is insufficient separation
between the slow and fast dynamics and an alternative
reduction scheme may be required.

In the following section we will illustrate this algorithm
on model of the heat shock response in E. coli.

IV. EXAMPLE

In order to deal with frequently changing situations,
living organisms require mechanisms to deal with harsh
environments. One such mechanism is the cellular heat shock
response. At elevated temperatures proteins inside the cell
begin to misfold and lose their geometry dependent function-
ality. In an attempt to stop this misfolding, the cell produces
heat shock proteins including molecular chaperones and
proteases. By helping to refold deformed proteins, molecular
chaperones can restore the original functionality of those
proteins. Proteases, on the other hand, help degrade damaged
proteins before those damaged proteins impair the function
of the cell. The core of the heat shock response mechanism
in E. coli is the synthesis of the σ32-RNAP complex [19].
Here we study a simplified model for σ32-RNAP synthesis
using the slow manifold finite state projection algorithm.

At normal physiological temperatures σ32 protein is found
almost exclusively in a complex σ32-DnaK. However, as the
temperature increases this complex becomes less stable and
the probability of finding free σ32 inside the cell increases.
Once free, σ32 can combine with RNA polymerase to form
a stable σ32-RNAP complex, which initiates production of
heat shock proteins. This simple regulatory mechanism is
summarized by a set of three reactions,

s1 
 s2 → s3, (13)

where s1, s2 and s3 correspond to the σ32-DnaK complex,
the σ32 heat shock regulator and the σ32-RNAP complex,
respectively. This model of the heat shock subsystem has
been analyzed before using various computational methods
including Monte Carlo implementations [7], [20].

In the biological system, the relative rates of the reactions
are such that the reaction from s2 to s1 is by far the fastest,
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Fig. 1. (a) Two dimensional integer lattice representing possible configu-
rations of the toy heat shock model. Here s2 and s3 are populations of free
σ32 molecules and σ32-RNAP compounds, respectively, while s1 is the
population of σ32-DnaK compounds. Reactions s1 
 s2, are represented
by bidirectional horizontal arrows and reactions s2 → s3 is represented
with diagonal arrows. The total number of σ32 is constant, so the chemical
state of the system is uniquely defined by s2 and s3 alone. (b) The same
lattice after applying the finite state projection. Unlikely states have been
aggregated into a single sink state. Each horizontal row of configurations is
separated from the rest by the slow reaction 3 and the is used to form the
fast block generator Hi

and σ32 molecules infrequently escape from DnaK long
enough to form the σ32-RNAP complex. The purpose of
this mechanism is to strike a balance between fixing the
damage produced by heat and saving the cell’s resources,
as a significant portion of cell energy is consumed when
producing heat shock proteins. The optimal response to the
heat shock is not massive, but measured production of heat
shock proteins, which leaves sufficient resources for other
cellular functions. We use the following set of parameters
values for the reaction rates:

c1 = 10, c2 = 4× 104, c3 = 2,

s1(0) = 2000, s2(0) = s3(0) = 0.

With only the reactions above, the total number of σ32–
free or in compounds–is constant, so that s1 + s2 + s3 =
const. With this constraint the reachable states of this three
species problem can be represented on a two dimensional
lattice as shown in Figure 1a. For our initial conditions there
are 2,001,000 reachable states, and the full chemical master
equation is too large to be tackled directly, and we wish to
find an approximate solution using the slow manifold FSP
algorithm at time tf = 300s. To do this we follow the steps
of the algorithm as follows:

Step 0: We specify the problem parameters as given above.
We choose a target 1-norm error of δ = 0.001 for the
distribution at time tf , and we choose an initial FSP set
XJ0 that includes all configurations such that s3 ≤ 200 and
s2 ≤ 11.

Step 1: We form the fast generator HJk
. For the config-

urations in XJ0 , reaction 1 has propensities ranging from
18,000 to 20,000, reaction 2 has propensities ranging up
to 110,000, and reaction 3 has a propensity that ranges no
higher than 22. Thus there is a clear separation between the
fast transitions (reactions 1 and 2) and the slow transitions
(reaction 3). Furthermore, since s3 changes only during the
slow reaction, each level of s3 = i defines a cluster of fast
interconnected configurations; these are shown as horizontal
rows in Figure 1. We will use the index set Ii to denote the
set of configurations in the ith cluster. The generator Hi is
formed from all of the reactions that begin and end within
XIi

. In this case there are 12 points in each ith cluster corre-
sponding to s3 = i, and s2 = {0, 1, 2, . . . , 11}; if we were to
change the number of points in our projection, the size and
number of clusters would change accordingly. The full fast
generator is defined HJ = diag(HI0 ,HI1 , . . . ,HI200). For
the reaction rates given above, the first nonzero eigenvalue
of HJ can be computed to be λm+1 ≈ −4× 104.

The rare transition generator GJ is then formed from
the remaining transitions coming from two components: (i)
reaction 3 corresponding to a transition from set XIi

to
XIi+1 , and (ii) all transitions taking the system from the
set XJ to its complement XJ′ .

Step 2: We build the matrices U and V from the left and
right eigenvectors corresponding to the zero eigenvalues of
HJ . We compute the norm ||GJV||1 ≈ 2.0, and use this to
estimate how well the time scale is separated between the
frequent and rare events:

ε =
||GJV||1
|λm+1|

=
2

4× 104
= 0.5× 10−4.

We also compute the transient error due to the initial con-
ditions, γ = |SLP(0)|1 exp(λm+1tf ) ≈ exp(−1.2 × 107),
which is far smaller that δ, and can therefore be neglected.

Step 3: We apply perturbation theory and approximate the
FSP solution as

PFSP
Jk

(tf ) ≈ V exp(UGJk
Vtf )UPJk

(0),

which has error γ + O(ε) compared to the unreduced FSP
solution. In order to determine whether this FSP solution is
sufficient, we compute ΓJk

= 1T PFSP
Jk

(tf ) = 7.3 × 10−8.
It is not.

Step 4: Since the ΓJ0 < 1 − δ, we need to add more
configurations and return to Step 1. If we define XJ1 to
include all configurations such that s3 ≤ 250 and s2 ≤
11, we find ΓJ1 = 0.034, which is little better. If we
further expand the configuration set to include up to 300
or 350 molecules of s3, we compute ΓJ2 = 0.921 and
ΓJ3 = 0.99997 respectively. The FSP solution on the set
XJ3 exceeds the precision of our stopping criteria, and we
know that PFSP

J3
(tf ) approximates the true solution within



200 220 240 260 280 300 320 340 360 380 400
0

0.005

0.01

0.015

0.02

0.025

0.03

Population of s3

Pr
ob

ab
ilit

y 
De

ns
ity

Fig. 2. Probability distribution for s3 calculated at tf = 300s. The slow
manifold FSP solution (dots) approximates well the FSP solution (smooth
solid lines). The jagged grey line represents the corresponding slow scale
SSA solution after 104 realizations. See also Table I.

δ = 0.001. Furthermore, since ε = 0.0005 and γ � δ, the
error introduced by the time scale separation is of the same
order.

For this problem we are interested in determining how the
population of σ32-RNAP compounds grows in time if the
temperature is constant and slightly above normal physiolog-
ical level. This number is proportional to the number of heat
shock proteins produced in the cell. With the original FSP
algorithm, we have computed the probability distribution for
s3 at tf = 300s, and Figure 2 illustrates this probability
distribution. The FSP solution is shown with solid lines, and
the dots represent the distribution of s3 as computed using
our current slow manifold FSP algorithm. The difference
between the two results is indistinguishable. However, if we
are to compare the relative computational effort of the two
algorithms, we find a significant improvement. Table I(top)
shows the computational time and accuracy for each step
of the FSP and the slow manifold FSP algorithm. From
the table we find that the time scale reduction reduces the
computational effort at each step by a factor of almost
1000 compared to the original FSP algorithm. For further
comparison I(bottom) shows the total computational effort
of the FSP and the slow manifold FSP, as well as two Monte
Carlo methods: the original SSA and an SSA approximation
very similar to the Slow Scale SSA [7] in which we have
applied the same time scale reduction approach. The 1-norm
difference between the original FSP and the slow manifold
FSP was found to be 6.6 × 10−4, which is indeed on the
same order as ε = 5×10−4 and is smaller than the required
error tolerance δ = 1×10−3. However, by making this small
sacrifice in accuracy, the slow manifold FSP converges in a
fraction of the time of any of the other methods.

V. CONCLUSION

Until recently, it was thought that the chemical master
equation could not be solved analytically except for the
most trivial systems. Previous work on the Finite State
Projection demonstrated that for many biological systems,

TABLE I
(TOP) A COMPARISON OF THE COMPUTATIONAL EFFORT AND

ACCURACY FOR THE FSP AND THE SLOW-MANIFOLD FSP
ALGORITHMS FOR EACH EXPANDING CONFIGURATION SET

XJ1 ⊂ XJ2 ⊂ XJ3 . (BOTTOM) A COMPARISON OF THE TOTAL

COMPUTATIONAL EFFORT AND ACCURACY OF THE FSP, THE

SLOW-MANIFOLD FSP, THE SSA AND A SLOW SCALE SSA ALGORITHM

FOR THE SOLUTION OF THE CME ARISING IN THE TOY HEAT SHOCK

MODEL AT tf = 300s. ALL COMPUTATIONS HAVE BEEN PERFORMED IN

MATLAB 7.2 ON A 2.0 MHZ POWERPC DUAL G5.

Configuration set ||Error||1 Comp. Time (s)
FSP Slow-Manifold FSP

XJ1 : s3 ≤ 250, s2 ≤ 11 0.97 253 0.39
XJ2 : s3 ≤ 300, s2 ≤ 11 0.08 439 0.54
XJ3 : s3 ≤ 350, s2 ≤ 11 2× 10−5 647 0.67

Method # Simulations Time (s) ||Error||1
FSP – a 1472 ≤ 2× 10−5

SSA 103 > 20000 ≈ 0.25

Slow-Manifold FSP – 1.88 ≈ 6.6× 10−4

Slow Scale SSA 103 82 ≈ 0.24
Slow Scale SSA 104 826 ≈ 0.066
Slow Scale SSA 105 8130 ≈ 0.027

aThe FSP and Slow-Manifold FSP algorithms are run only once
with a specified allowable total error of 10−3.

bulk system reductions could bring models closer into the
fold of solvable problems. Here we have shown that the
Finite State Projection method can be further enhanced when
solving the chemical master equation for systems involving
multiple time scales. In this work we have presented a
Slow Manifold version of the FSP algorithm. Based upon
singular perturbation theory and our previous work in [18],
this algorithm provides a powerful computational tool for
studying intracelular processes and gene regulatory networks.

By casting the stochastic chemical kinetics problem in a
familiar linear system context, the FSP provides valuable
insight into the bewildering complexity that intracellular
processes exhibit. Model reductions not only speed up
computations, but they also enable us to distinguish which
aspects of a system are important and which are not. It is
plausible that the main features of intracellular dynamics
can be captured in a relatively small subset of the state
space, as the results obtained by FSP reduction on the heat
shock model suggest. Depending on the observation time of
interest, some reactions can be neglected, while some will
contribute only through their averages. Preliminary success
with our approach gives us a hope that relatively simple
models for intracellular processes can be discovered in the
process of reducing the FSP solution.

Of course, one can easily envision that additional model
reductions may be possible to even further enhance the power
of the Finite State Projection. Indeed other reductions based
upon control theory [17] are already becoming apparent.
Also, in our computations we have used off the shelf nu-
merical routines for eigensystem calculations and matrix ex-
ponentiation. Further improvements in computational speed



can be achieved if these routines are optimized for matrices
which define master equations and their special properties.
We intend to investigate these possibilities in the future.
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